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A statistical/micromechanical model is developed for the prediction of the fracture
toughness of fibrous composites. The fracture resistance of the material is assumed to be
related to the statistical distribution of the fiber pull-out length. The distribution of the fiber
pull-out length is derived from the fiber strength distribution. The R-curve behavior of the
fibrous composite is predicted and interpreted based on the present model. The limiting
fracture toughness is predicted to be proportional to the square root of the ineffective
length, or proportional to the square root of the fiber length if the fiber length is less than
the ineffective length. C© 2000 Kluwer Academic Publishers

1. Introduction
During crack growth, several failure mechanisms can
be activated in fibrous composites. These mechanisms
include fiber breakage, matrix damage, fiber/matrix
debonding, fiber pull-out, etc. Even a brittle-fiber/
brittle-matrix composite can have a high fracture tough-
ness. For example, a brittle epoxy resin with fracture
energy of about 102 J m−2 can be combined with brit-
tle glass fibers to form a composite system which may
have fracture energy of up to 105 J m−2 [1]. Such large
increase in fracture energy is attributed to the above-
mentioned failure mechanisms. Like ductile metals, the
fibrous composite also exhibits the so-calledR-curve
behavior [2], i.e. the energy required for catastropic or
large-scale crack extension is larger than that for the ini-
tiation or small-scale crack growth. TheR-curve behav-
ior has been explained with some success based on the
crack bridging concept [3–6]. In particular, a compre-
hensive account on the crack bridging concept has been
given in Cotterell and Mai [5]. In this paper, an alterna-
tive viewpoint is proposed. It is believed that an alter-
native viewpoint may be important for an independent
verification of the results. In the crack-bridging model,
the relationship between the fiber restraining force and
crack opening displacement in the crack wake can not
be easily determined or verified. On the other hand,
the material parameters appeared in the present predic-
tion model (as shown in the following sections) can be
measured in the post-mortem specimens. It should also
be noted that both the anisotropy of materials and the
blunt crack tip are taken into account. These factors
have been ignored in the above-mentioned models.

The model composite is unidirectionally reinforced
with fibers. The external tensile loading is applied par-
allel to the fiber direction, while the crack is assumed to
be perpendicular to the fibers. Both the fibers and ma-
trix are brittle, so that the toughness of the individual
phase is negligible. The debonding process of the fiber

from the matrix is assumed to occur before the fiber
breaks. Thus the main crack growth resistance comes
from the fiber pull-out mechanism. It should be noted
that the theoretical results can be applied to the situ-
ation that fibers are randomly oriented, provided that
some precautions are observed.

It has been experimentally confirmed that the pull-out
length of fibers is not a constant [7]. This implies that
the resistance of the composite material to crack growth
is varied from one place to another. The present theoret-
ical analysis is based on this observation. Accordingly,
a statistical approach is adopted. The distribution of the
pull-out lengths is derived from the fiber strength dis-
tribution. The crack tip is no longer to be treated as
sharp as in the case of homogeneous brittle materials.
The crack blunting due to the presence of fibers is taken
into consideration. The criterion for crack growth is as-
sumed to be that the stress near the rounded crack tip
must exceed some threshold value. TheR-curve behav-
ior of fibrous composites can thus be explained consis-
tently. It is interesting to compare the present microme-
chanical theory with the phenomenlogical theory devel-
oped earlier [8]. Both theories are aimed at explaining
and predicting the stable crack growth behavior of the
material based on similar concepts.

2. The stress field ahead of a blunt crack
The stress field around a blunt crack has been studied
by several investigators [9, 10]. Specifically, the stress
at the blunt crack tip is given by

σ = R
K√
2πρ

(1)

where K is the nominal stress intensity factor;ρ is
the radius of the curvature of the crack tip;R is the
stress rounding factor. In general,R is dependent on
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the actual profile near the crack tip [11]. Furthermore,
R is also dependent on the anisotropy of the material
[12]. For example, when the material is isotropic and
the crack is idealized as a slender ellipse thenR= 2

√
2.

On the other hand, in an orthotropic material, the value
of R depends on the ratio of the Young’s moduli along
two principal directionsE1 to E2 and its determination
requires the actual crack profile. Nevertheless, for most
fibrous composites the range of the ratio ofE1 to E2 is
10−2–102. Accordingly the range ofR is restricted by
2< R< 9 for most fibrous composites.

3. Micromechanical model
It is assumed that for crack extension the crack must
fully open, i.e. the strengthening fiber must be pulled
out partially or completely. Accordingly, if the local
pull-out length is`, it is assumed that the crack tip
opening displacement and the radius of the rounded
crack tip are about this same value. Consequently, we
takeρ≈ `. Therefore the stress near the crack tip is
given by

σ = ω K√
2π`

(2)

whereω is a geometrical factor accounting for the stress
rounding factorRand the approximation ofρ≈ `. Fur-
thermore, it is assumed that the crack growth is possible
only whenσ attains a critical valueσc. In general,σc
can be taken the strength of the fiber. In terms of the
nominal stress intensity factor, this implies that

K ≥ S
√

2π` (3)

is the condition for crack growth, whereSdenotesσc/ω.
Since` is not a constant, a statistical distribution about
` must be established.

4. Distribution of pull-out lengths
The statistical distribution of fiber pull-out lengths has
been studied [7, 13, 14, 6]. Since some incorrect ar-
guments made in [13], a new theoretical analysis is
presented here.

Typical crack tip region is sketched in Fig. 1 where`d
and`c denote the debond length and ineffective length
respectively. Before the fiber breaks, the stress varia-
tion along the fiberσ (y) is governed by the equilib-
rium condition and the stress transfer between the ma-
trix and fiber. Several stress transfer models have been
proposed. In elastic stress transfer cases, Rosen [15]
indicated

`c ∼ d

(
Ef

Gm

)1/2
(

1− V1/2
f

V1/2
f

)1/2

(4)

whered is the fiber diameter,Ef the Young’s modulus
of the fiber,Gm the shear modulus of the matrix,Vf the
volume fraction of the fiber.

Figure 1 Schematic diagram of crack tip region in a fibrous composite.

Based on the finite difference solution, Termonia [16]
found

`c ∼ d
Ef

Em
(5)

In “plastic” stress transfer cases, a typical estimation is
given by Kelly [17]

`c = d
〈σf〉
2〈τ 〉 (6)

where〈σf〉 and〈τ 〉 are the average fiber strength and
fiber/matrix interface shear stress. Here we have some-
how modified the original model, since there are large
scatters in the fiber strength. The strength variation of
the fiber is usually given in terms of the Weibull distri-
bution, i.e.

P(σ ) = 1− exp

[
−
(
σ

σ0

)α]
(7)

whereσ0 andα are constants.
Within the ineffective length, i.e.y≤ `c/2 (refering

to Fig. 1), we expect that the single-site fiber breakage
probability is much greater than the multi-sites fiber
breakage probability. Hence if we dividèc/2 into n
cells of equal length as shown in Fig. 2. The frequency
of the fiber breaks atyi is

fi ∼ P(σ (yi ))
n∏

j 6= i

(1− P(σ (yj ))) (8)

Accordingly, the relative frequency is

fi
f j
= Pi /(1− Pi )

Pj /(1− Pj )
(9)

wherePi ≡ P(σ (yi )). Passing to the limit, we find that
the cumulative distribution for the fiber pull-out length
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Figure 2 A segment of fiber of length̀c/2 being divided inton cells.

is given by

F(y) =
∫ y

0

P(σ (ξ ))

1− P(σ (ξ ))
dξ

/∫ `c/2

0

P(σ (ξ ))

1− P(σ (ξ ))
dξ

(10)
or

F(y) =
[ ∫ y

0
exp

(
σ (ξ )

σ0

)α
dξ + y

]
/[∫ `c/2

0
exp

(
σ (ξ )

σ0

)α
dξ + `c

2

]
(11)

Thus, once the stress variation along the fiberσ (y) is
known,F(y) can be directly computed by (11). A spe-
cial case is explored here. Before fiber breaking, if the
fiber is completely detached from the matrix, thenσ (y)
is a constant. It is concluded that

F(y) = 2y

`c
y ≤ `c

2
(12)

The distribution is independent on strength variation
of the fiber. Since in a debonded fiberσ (y) decreases
as y increases, the prediction of Equation 11 usually
would yield a concave curve as shown in Fig.3. While
the distribution (12) only corresponds to some extreme
conditions, the experimental data [7] can nevertheless

Figure 3 Typical statistical distributions of the pull-out lengths.

be reasonably fitted by this equation, except at the lower
tail. This can be easily explained by the following ar-
guments. Since the usual procedure for measuring the
pull-out length is to measure the length of the fiber ex-
truding out the crack surface, so the experimental data
are usually larger than those defined here by a small
amountδ due to the irregular structure of the crack
surface. Thus, we shall use the following statistical dis-
tribution for pull-out lengths

F(y) =


0 y < δ

2y

`c
δ ≤ y ≤ `c

2

1 y >
`c

2

(13)

According to Equation 3, the local resistance to crack
growth is proportional to

√
`. Therefore, the probability

of pulling out one fiber (or one strand of fibers) near
the crack tip by the driving “force”K is assumed to be

F1 ≡ Prob(1;K )

=


0 K < S

√
2πδ(

K

S
√
π`c

)2

S
√

2πδ ≤ K < S
√
π`c

1 S
√
π`c ≤ K

(14)

If the crack growth distance is not large compared with
the original crack length, then the nominal stress inten-
sity factorK is almost a constant during crack growth.
Consequently, the probability of pulling outm fibers is
given by

Fm ≡ Prob(m; K ) = (F1)m

=


0 K < S

√
2πδ(

K

S
√
π`c

)2m

S
√

2πδ ≤ K < S
√
π`c

1 S
√
π`c ≤ K

(15)
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Figure 4 The predicted crack growth resistance as a function of growth
distance.

Accordingly, the average〈K 〉 to drive a crack to prop-
agate a fixed distancemλ whereλ is the fiber spacing
can be determined by integrating the whole possible
range ofK for constantm, i.e.

〈K 〉 =
∫ S
√
π`c

S
√

2πδ
K
∂Fm

∂K
dK

= 2m

2m+ 1
(S
√
π`c− S

√
2πδ) (16)

or

〈K 〉
S
√
π`c
= 2m

2m+ 1
(1−

√
β) (17)

whereβ ≡ 2δ/`c. In Fig. 4, a schematical curve is ploted
by using the continuous version of Equation 17, i.e.m
is taken to be a real variable. TheR-curve behavior of
the material is vividly seen. Furthermore, the standard
deviation can also be computed,

σ̂

S
√
π`c
= 1

2m+ 1

√
m

m+ 1
(1− β) (18)

Generally speaking, some part of the toughness is inde-
pendent on growth distance, which is associated with
the inherent fracture toughness of the fiber and the ma-
trix. For the fibrous composites investigated in this pa-
per the inherent part of the toughness is much less than
the contribution from the pull-out mechanism. Never-
theless, for generality we shall modify Equation 17 by
adding a term independent on the growth distance, so

〈K 〉
S
√
π`c
= (1−

√
β)

2m

2m+ 1
+ γ (19)

Figure 5 The predicted limiting fracture toughness as a function of the
fiber length.

The fracture toughness of the large scale crack growth
(the limiting fracture toughness〈K 〉∞) can be found
by assumingm is large. Hence from Equation 19 we
obtain

〈K 〉∞
S
√
π`c
= (1−

√
β)+ γ (20)

When the contributions ofβ andγ are negligible,〈K 〉∞
is roughly aboutS

√
π`c. For short fibrous composites

with the average fiber lengthL smaller thaǹc, the limit-
ing fracture toughness is predicted byS

√
πL. However,

it should be noted that for short-fiber reinforced com-
posites, dut to the presence of fiber ends, the fiber may
be pulled out before breaking if the embedded length
is not long enough [18]. A more rigorous treatment
should take this matter into accounts. In this paper we
shall ignore this issue. Accordingly, the relationship
between the limiting fracture toughness and the fiber
length is predicted as shown in Fig. 5 by assumingS
is a constant. Since the experimental data reveal that
the average fiber strength decrease as the fiber length
increases, it may be infered that the limiting tough-
ness actually would attain its maximum when the fiber
length is equal to the ineffective length. The conclusion
is supported by the experimental results [19].

5. The influence of orientational
distribution of fibers

In the foregoing analysis, it is assumed that the fibers
are all aligned. Practically, different lay-ups must be
used for different structural applications. Experimental
results [19] indicates that the pull-out length distribu-
tion is relatively independent on the fiber orientation.
Hence we may assume that`c remains unchanged. Thus
the limiting fracture toughness is expected to be pro-
portioal to the composite strength in the loading direc-
tion, if the pull-out mechanism dominates the failure
proess. In other words, the orientational dependence of
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the limiting fracture toughness can be shown [18] as

〈K (θ )〉∞ = 〈K (θ = 0)〉∞ cos2 θ (21)

whereθ is the misaligned angle between the loading
and the fiber direction. On the other hand, it should
be noted that, for instance, in a cross-ply laminate the
90◦-ply apparently contribute little to the strength of
the composite, but its presence usually would assist the
debonding process of fibers in the 0◦-ply. Therefore, we
should not underestimate the importance of the weaker
layer in enhancing the toughness of the composite.

For 2D randomly distributed fiber reinforced com-
posites, approximately we have

〈K (2R)〉∞ = 1

2
〈K (θ = 0)〉∞ (22)

For 3D random structure composites, we find

〈K (3R)〉∞ = 1

3
〈K (θ = 0)〉∞ (23)

6. Limiting fracture toughness
In this section the limiting fracture toughness of some
typical fibrous composites are calculated. The critical
stressσc is assumed to be the average fiber strength〈σf〉.
The fiber volume fraction is assumed to be 0.65. The
geometrical factorω is then estimated as 2.5. The di-
ameter of the fiber is assumed to be 10µm. The tensile
strengths of the glass and graphite fibers are 3.1 GPa
and 3.44 GPa respectively. The shear strengths of the
epoxy and polyester resins are 30 MPa and 25 MPa re-
spectively. The estimation of̀c is then based on Equa-
tion 6 and is confirmed with the experimental data [7].
The final results are shown in Table I. The theoretical
predictions are not in perfect agreement with the experi-
mental data, but the order of magnitude is in agreement.
Specifically, in the present model only the fiber pull-out
mechanism contributes to its toughness while in a real
material system other failure mechanisms always be
present and can contribute to its toughness. Despite that
there are some uncertainties about the actual material
properties used in experiments, such a fair agreement
indicates that the fiber pull-out is the dominant failure
mechanism in these fibrous composites.

The theoretical results indicate a way to produce fi-
brous composites with both high strength and high frac-
ture toughness. Fibers of smaller diameter should be
used and strong binding agents are used to glue them

TABLE I The limiting fracture toughness

`c 〈K (0)〉∞ 〈K (2R)〉∞ KQ

Material (mm) Exp. (MPa
√

m) (M Pa
√

m) Exp.

Glass/epoxy 0.52 0.6a 50 25 22b

Glass/polyester 0.62 1.4a 55 28 28b

Graphite/epoxy 0.57 1a 58 29 44c

aRef[7].
bRef[2].
cRef[20].

into fiber strands of high strength. On the other hand, in
order to have high toughness (to increase the ineffective
length) the binding materials of low strength should be
used to produce the final composite materials by bind-
ing these strong fiber strands together.

7. Concluding remarks
During crack growth, the fracture resistance of the fi-
brous composites is varied along the crack path. This
variation can be infered from the statistical variation of
fiber pull-out lengths. The crack tip configuration can
be described in terms of the local pull-out length. Ac-
cordingly the stochastic resistance of the material can
be related to the statistical description of the pull-out
length. Furthermore, we also present a mathematical
analysis to derive the pull-out length distribution from
the fiber strength distribution. Based on the above men-
tioned procedures, a statistical/micromechanical model
is developed for the prediction and explanation of theR-
curve behavior of fibrous composites. The limiting frac-
ture toughness is found to be proportional to the square
root of the ineffective length, as the maximal pull-out
length can reach up to one half of the ineffective length,
or proportional to the square root of the fiber length if
the fiber length is less than the ineffective length.

It should be noted that the limiting fracture tough-
ness is only an indicator for the maximal potential of
the material’s resistance to crack growth. Under usual
conditions, we may not be able to fully realize this
potential. Hence, only some fraction, sayF%, of this
value should be used for the design purpose. It is evi-
dent that for the materials with the same limiting frac-
ture toughness, the value ofF% may have to be chosen
differently. In fact the value ofF% depends critically
on the fiber strength variation, particularly on theα in
Equation 7. For the same level of reliability against frac-
ture, the larger theα value the smaller theF% value
should be used. Since largerα implies the more ho-
mogeneous in the fiber strength, this situation in turn
indicates the pull-out length distribution would be con-
centrated around a very short interval.

Finally, it should be pointed out that the present anal-
ysis is based on the assumption that the debonding pro-
cess occurs first, and the fiber breakage follows. The
pull-out process is then responsible for resisting crack
growth. Under certain circumstances, the debonding
and pull-out processes may be inhibited by the strong
interface strength, or by the high loading rates [21],
the dramatical decrease in the pull-out length implies
a large decrease in the fracture toughness. For a com-
prehensive treatment on the prediction of the fracture
toughness of fibrous composites, the role played by the
interface strength must be properly considered. Such
a treatment is beyond the scope of the present article.
Interested readers can find the recent and past develop-
ments in this field in Ref [22].
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